浅水域における肥大船型の推進性能に関する 実験的研究

1.はじめに

船舶が浅水域を航行する場合、推進性 能、操縦性能の低下や、船体沈下量の増 加等が生じることが知られています。

浅水域の多い航路に就航予定の肥大船 の設計にあたり、浅水域での水槽試験 (抵抗試験、自航試験等)、および理論計 算による検討を行い、浅水域航行時の性 能を評価しました。

2.主要目等

試験に使用した模型船の主要目を Table 1に示します。

浅水域での試験は、浅水域試験設備を 有する(独)海上技術安全研究所三鷹第 三船舶試験水槽(中水槽)で実施しまし た。模型寸法は就航海域条件により設定 した水深および、設備の関係、並行して 同所第二船舶試験水槽(大水槽)で実施 した大型模型(長さ約6m)による試験 との関係等を考慮して決定されました。

試験水槽の寸法、水深をTable 2に示 します。

Table 1	Principa	l dimensions

	模型船
L _{PP} (m)	4.010
B (m)	0.763
d (m)	0.216
Table 2 Dimensions of test tank	

	中水槽
長さ (m)	150
幅 (m)	8
水深 (m)	可変

水深をH、満載喫水をdとした場合、 今回行った試験は、H/d=16.17、 2.049、1.640の3種で、以下では H/d=16.17を深水域、H/d=1.640、 2.049を浅水域と呼ぶこととします。

3.推進性能

3.1推進性能試験

抵抗試験結果の解析は、水抵抗を粘性 抵抗と造波抵抗に分ける3次元外挿法に より、摩擦抵抗はシェーンヘルの摩擦抵 抗係数により計算しました。また自航要 素は推力一致法により求めました。

造波抵抗係数rw、 伴流係数1-wT、 ス ラスト減少係数1-tについては、フルー ド数(Fn)ごとの深水域の結果(下添 字∞で表す)を1とし、粘性抵抗の3次 元影響CTM/CFM は深水域の1+kを1とし た場合の浅水域の試験結果をFig.1~4 に示します。

0.16

0.18

0.2

0.12

0.8 0.1

深水域における計画速力である Fn=0.1625でのrw、1-wT、1-t、1+kに ついて、浅水域での深水域に対する比を Table 3に示します。

Table 3 Experimental results

	H/d=2.049	H/d=1.640
٢w	5.41	15.4
1+k	1.28	1.39
1-w⊤	0.64	0.49
1-t	1.08	1.16

rwの増加率は計測Fn全域でほぼ一定で あり、Fn=0.1625ではH/d=2.049で 5.41倍、H/d=1.640で15.4倍に増加 しています。また、1+kもH/d=2.049 で1.28倍、 H/d=1.640で1.39倍に 増加しています。Fn=0.1625における 全抵抗係数C™に対する、造波抵抗係数 Cwと粘性抵抗係数(1+k)CFMの構成比率 をTable 4に示します。

Table 4 Ratio of C_W , $(1+k)C_{FM}$ to C_{TM}

H/d	16.17	2.049	1.640
Сw/Стм×100(%)	3.6	11.0	24.7
(1+k)C _{FM} /C _{TM} ×100(%)	96.4	89.0	75.3

深水域では造波抵抗は全抵抗に対して 3.6%でしたが、H/d=2.049では 11.0%、H/d=1.640では24.7%に増 加しており、造波抵抗の構成比率が大き くなっています。

浅水域での1-w₁は深水域に比べ H/d=2.049で2/3程度、H/d=1.640 で半分程度に減少しています。1-tは浅 水域で深水域に比べ増加しますが、水深 が浅くなると単調に増加する訳ではな く、H/d=1.640ではFnが増加するにと もない1-tが急激に増加する特異な傾向 があります。

3.2船尾流場

Fig.5にプロペラ位置での伴流計測結 果を示します。自航試験の1-w⊤の結果 と同様に、浅水域で船尾の流速が減少し ています。

深水域 H/d=16.17 浅水域 H/d=1.640 Fig.5 Wake distribution (Measured)

さらに、浅水航行時の流場を把握する ため、浅水航行時と深水航行時の波無し 二重模型流れの粘性流場計算((CFD) を実施しました。格子生成にはGMESH を、NSソルバーにはNICEを使用しまし た。計算レイノルズ数を4.5×10⁶(模 型船のFn=0.1625に対応)とし、乱流 モデルはBLとMBLモデルを使用しまし た。

なお、H/d=1.640では計算が発散し たのでH/d=2.049のみ示します。

プロペラ位置での伴流分布をFig.6に、 限界流線の計算結果をFig.7に示します。 Fig.6によると試験結果と同様に船尾流 速が減少していることが分かります。ま たFig.7によると、浅水域では船尾で大 規模な剥離が発生していることが分かり ます。

3.3馬力計算

深水域における大小模型船結果を比べ ると、形状影響係数および造波抵抵抗係 数はほぼ同じでしたので、抵抗性能に関 しては、大型模型試験と同様な扱いが可 能であると判断しました。

他方、自航要素にはかなりの相違が認 められましたので、深水域の大型模型の 実船馬力推定に用いた模型船-実船相関 係数を基に、模型の大小を考慮に入れた、 伴流率の修正を行い、浅水域の実船馬力 を計算しました。

Fig.8にEHPとBHPの増加率の推定結 果を示します。EHPとBHPの増加率は、 同一水深ではほぼ同じでした。特に H/d=1.640の場合はEHPの増加率と BHPの増加率は、ほとんど一致してい ます。よって浅水影響による馬力増加は、 船体抵抗の増加が主要因であるといえま す。

Fig.6 Wake distribution (CFD)

4.まとめ

今回の計測では、従来から言われてい るように浅水域で発生する大幅な抵抗増 加が確認されました。また船尾流場が浅 水域で大きく変化することが、計測結果 や理論計算(CFD)によって示されまし た。

Table 5 Speed decrease at rated power

H/d	速力低下率(%)
2.049	10.1
1.640	16.7

Table 6 Power increase at designed speed

H/d	馬力増加率(%)
2.049	49.9
1.640	137.2

浅水域での模型試験は、通常の深水域 での試験と流体力学的な条件が異なる事 が考えられます。今回の試験では通常の 深水域での試験と同様の手法で計測、解 析を行いましたが、浅水域特有の現象に

浅水域

Fig.7 Limited steam line (CFD)

Fig.8 EHP, BHP

Table 5、 6に定格出力における速度 低下、設計速度における馬力増加を示し ます。 対応していない可能性もあります。今回 の試験、検討で得られた知見を基に、浅 水域での計測、解析法の検討をさらに行 っていくつもりです。

本研究は、(株)名村造船所殿との共 同研究として実施されました。

(試験センター技術部 谷上明彦)

参考文献

谷上明彦,山元康博,新郷将司:浅水域 における肥大船型の推進性能に関する実 験的研究,日本船舶海洋工学会 春季講 演会(平成20年)